Lecture 8: Proof techniques

Mathematical system: A system consists of Axioms, Definitions, and Terms is called a Mathematical system. We prove or disprove any statement within a mathematical system. Let us define some terms which are related to a mathematical system directly or indirectly.

- 1. **Definition:** A precise description or meaning of a mathematical term.
- 2. **Theorem:** A proposition that has been proved to be true. A theorem is of two kinds: Lemma and Corollary.
- 3. **Lemma:** A theorem that is usually not too interesting in its own right but is useful in proving another theorem.
- 4. Corollary: A theorem that follows immediately from another theorem.
- 5. Conjecture: A statement that is suspected to be true but yet to prove.

Example: The 4-color conjecture, the 3x+1 conjecture, Goldbach's conjecture, Hadwiger conjecture, the abc conjecture, etc.

6. **Axiom:** A statement that is assumed to be true without proof.

Example: 2+2=4.

7. **Paradox:** A statement that can be shown, using a given set of axioms and definitions, to be both true and false at the same time.

Example: Nobody goes to Murphy's Bar anymore as it's too crowded.

1 Methods of Proof:

By a proof, of a proposition $p \Rightarrow q$, we mean an argument that establishes the truth value of the proposition. Since the argument can be given in different forms and hence we can have different proof techniques.

- 1. **Direct Method:** Using p is true and with the help of other axioms, definitions and previously derived theorems, we here show that q is true.
 - (a) **Example:** If m is odd and n is even integer, then show that m + n is odd integer.

Proof: We use the definitions of even and odd integer.

m is odd if there is an integer k_1 such that $m = 2k_1 + 1$ and n is even integer if there is an integer k_2 such that $n = 2k_2$.

Then $m+n=2k_1+1+2k_2=2(k_1+k_2)+1=2k+1$, where $k=k_1+k_2$. So, m+n is odd.

- 2. **Proof by Contradiction** In this technique, we assume that q is false, that is, $\neg q$ is true. Note that $\neg(p \to q) \equiv (p \land \neg q)$, that is to say, $p \to q$ is true if and only if $(p \land \neg q)$ is false. In other words, $p \land \neg q$ is a contradiction.
 - (a) **Example:** For any integer x if x^2 is even, then x is even.

Proof: Suppose x is not even and x^2 is even. So $x = 2k_1 + 1$ and $x^2 = 2k_2$ for some integers k_1, k_2 . Then we have $(2k_1 + 1)^2 = 2k_2$. This implies $4(k_1^2 + k_1) + 1 = 2k_2$. But $4(k_1^2 + k_1) + 1$ is odd and $2k_2$ is even, so these cannot be equal. Thus we have a contradiction.

(b) **Example:** Prove that $\sqrt{2}$ is irrational.

Proof: Suppose $\sqrt{2}$ is rational. Then we can write $\frac{p}{q} = \sqrt{2}$, where (p,q) = 1.

Then squaring both sides, we get $p^2 = 2q^2$. This implies p is even, that is, p = 2k for some integer k. But then $q^2 = 2k^2$, that is, q is even. This gives a contradiction that (p,q) = 1.

(c) **Example:** Prove that primes are infinite.

Proof: Suppose there are only k primes p_1, p_2, \ldots, p_k . Now consider $n = p_1 p_2 \ldots p_k + 1$. Since n is not a prime so there is some prime p_i such that p_i divides n. Also p_i divides $p_1 p_2 \ldots p_k$. This implies p_i divides $n - p_1 p_2 \ldots p_k = 1$. This is a contradiction as the smallest prime is 2.

(d) **Example:** Prove that there are no integers x and y such that $x^2 = 4y + 2$.

Proof: Suppose there are integers x and y such that $x^2 = 4y + 2 = 2(2y + 1)$. So x^2 is even and therefore x is even. Let x = 2k for some integer k. Then substituting this, we get $2k^2 = 2y + 1$. But $2k^2$ is even while 2y + 1 is odd, so these cannot be equal. Thus we have a contradiction.

3. **Proof by Contrapositive:** Note that $p \Rightarrow q \equiv \neg(p \land \neg q) \equiv \neg(\neg q \land p) \equiv \neg((\neg q) \land \neg(\neg p)) \equiv (\neg q \Rightarrow \neg p)$.

Thus $p \Rightarrow q$ is logically equivalent to $\neg q \Rightarrow \neg p$. In other words, saying that if p is true then q is true is equivalent to if q is false then p is false.

(a) **Example:** For any integer x if x^2 is even, then x is even.

Proof: Suppose x is not even. So $x = 2k_1 + 1$ for some integer k_1 . Then we have $x^2 = (2k_1 + 1)^2 = 4(k_1^2 + k_1) + 1$. This shows that x^2 is not even.

(b) **Example:** Let a and b be integers. If a + b is even, then a and b are either both odd or both even.

Proof: Suppose that a and b are not both odd and both even. So one of a and b is odd and other is even. Without loss of generality, assume that a is even and b is odd. So a=2k and b=2l+1 for some integers k,l. Therefore a+b=2(k+l)+1. So a+b is odd.

4. **Proof by Cases:** If $p \Rightarrow q$ and p is partitioned into cases r, s, that is, $p \equiv r \lor s$. Then from the below truth table, we see that $p \Rightarrow q \equiv (r \lor s) \Rightarrow q \equiv (r \Rightarrow q) \land (s \Rightarrow q)$.

\overline{r}	s	q	$r \vee s$	$(r \vee s) \Rightarrow q$	$r \Rightarrow q$	$s \Rightarrow q$	$(r \Rightarrow q) \land (s \Rightarrow q)$
Т	Т	T	Т	T	Т	Т	Т
Τ	Т	F	Т	F	F	F	F
\mathbf{T}	F	$\mid T \mid$	F	Т	Т	Т	T
\mathbf{T}	F	F	Т	F	F	Т	F
F	Т	$\mid T \mid$	Т	Т	Т	Т	m T
F	Т	F	Т	F	Τ	F	F
F	F	Т	F	T	Τ	Т	m T
_F	F	F	F	Т	Т	Т	Т

So if p as a proposition involves "or", it is sufficient to consider each of the possibilities for p separately.

(a) **Example:** Prove that there is no possible integer n such that $n^2 + n^3 = 100$.

Proof (Method 1): If $n^2 + n^3 = 100$ then we have

 $n^2 \le 100$ and $n^3 \le 100$. This implies $n \le 10$ and $n \le 4$. So we have to check for the cases n = 1, 2, 3, 4. This gives the following cases:

For
$$n = 1$$
, $n^2 + n^3 = 1 + 1 = 2 \neq 100$,

For
$$n = 2$$
, $n^2 + n^3 = 4 + 8 = 12 \neq 100$,

For
$$n = 3$$
, $n^2 + n^3 = 9 + 27 = 36 \neq 100$,

For
$$n = 4$$
, $n^2 + n^3 = 16 + 64 = 80 \neq 100$.

Proof (Method 2): $n^2 + n^3 = 100$ is equivalent to $n^2(1+n) = 100$. This is an expression of factors of 100 into two numbers n^2 and 1+n.

Note that possible divisors of 100 are : 2,4,5,10,25,50 and out of then for the possibility of $n^2 = 4$ and $n^2 = 25$.

Thus for $n^2 = 4$, n = 2 and (1 + n) = 3, then we get $n^2 \cdot (1 + n) = 4.3 = 12 \neq 100$,

Similarly, for $n^2 = 25$, n = 5 and (1+n) = 6, then we get $n^2 \cdot (1+n) = 25.6 = 150 \neq 100$.

(b) **Example** Prove that if n is an integer, then $n^2 \ge n$.

Proof: Proof is divided into three cases: (i) if n = 0 (ii) $n \ge 1$ is positive, (iii) $n \le -1$ is negative.

Case 1: If n = 0, then $0^2 \ge 0$ holds.

Case 2: If $n \ge 1$, then multiplying both sides by n, we get $n^2 \ge n$.

Case 3: if $n \le -1$, then since $n^2 \ge 0$, we get $n^2 \ge n$.

(c) **Example** Use a proof by cases to show that |xy| = |x||y|, where x and y are real numbers.

3

Proof: The proof is divided into four cases:

Case 1: When $x, y \ge 0$, the result holds.

Case 2: When $x \ge 0$ and y < 0, then $xy \le 0$. So, |xy| = -xy = x(-y) = |x||y|.

Case 3: When $y \ge 0$ and x < 0, then as in Case 2.

Case 4: When x < 0 and y < 0, then xy > 0. So, |xy| = xy = |x||y|.

5. **Proof by Counterexample:** Suppose we have problem: Prove or disprove $A \Rightarrow B$. Thus if the proposition $A \Rightarrow B$ is not true then to show that $\neg(A \Rightarrow B)$ is true for some instances.

If the problem is of the form $\forall x, A(x) \Rightarrow B(x)$, then its negation is $\exists x (\neg B(x) \land A(x))$.

Thus to prove the original statement is not true, we have to find an x such that $(\neg B(x) \land A(x))$ is true.

(a) **Example:** Prove or disprove: for all positive integetr n, $n^2 - n + 41$ is prime.

Solution: Let us disprove by counterexample. If the statement is not true then we have to find a positive integer n such that $n^2 - n + 41$ is not a prime.

Let n = 41. Then $n^2 - n + 41$ is equal to 1681, which is not a prime.

(b) **Example:** Prove or disprove: for all positive inetegrs n, $2^n + 1$ is a prime.

Solution: For n = 1, $2^n + 1 = 3$, which is prime.

For n = 2, $2^n + 1 = 5$, which is prime.

For n = 3, $2^n + 1 = 9$, which is not a prime.

- 6. **Existence Proofs:** An existence proof is a proof of a statement of the form $\exists x P(x)$. Such proofs are generally fall into one of the following two types:
 - (a) Constructive Proof: Establish $P(x_0)$ for some x_0 in the domain of P.
 - i. Example: Prove that If $f(x) = x^3 + x 5$, then there exists a positive real number x_0 such that $f'(x_0) = 7$.

Proof: Find f'(x) = 7, this gives $x_0 = \sqrt{2}$.

- (b) Nonconstructive Proof: Assume no x_0 exists that makes $P(x_0)$ true and derive a contradiction. In other words, use a proof by contradiction.
 - i. **Example: Pigeonhole Principle**: If n+1 pigeons are distributed into n holes, then some hole must contain at least 2 of the pigeons.

Proof: Assume n+1 pigeons are distributed into n boxes. Suppose the boxes are labeled B_1, B_2, \ldots, B_n , and assume that no box contains more than 1 object. Let k_i denote the number of objects placed in B_i . Then $k_i \leq 1$ for $i = 1, \ldots, n$, and so $k_1 + k_2 + \ldots + k_n \leq 1 + 1 + \ldots + 1 \leq n$. But this contradicts the fact that $k_1 + k_2 + \ldots + k_n = n + 1$, the total number of objects we started with.

- 7. **Proof by Induction:** There are two form of mathematical induction. One is weak form and another is strong form. We discuss them separately.
 - (a) Weak Form of Mathematical Induction: Let P(n) be a statement on positive integer n such that
 - 1: P(1) is true,
 - 2: for all $k \ge 1$, P(k+1) is true whenever one assumes that P(k) is true.

Then P(n) is true for all positive integer n.

i. **Example:** Prove that $1 + 2 + ... + n = \frac{n(n+1)}{2}$.

Proof: Let $P(n) = 1 + 2 + \ldots + n$. Then P(n) holds for n = 1.

Suppose P(n) holds for n = k, that is, $P(k) = 1 + 2 + \ldots + k = \frac{k(k+1)}{2}$. Now we show that P(n) is true for n = k + 1.

 $P(k+1) = 1 + 2 + \ldots + k + (k+1) = \frac{k(k+1)}{2} + (k+1) = \frac{(k+1)(k+2)}{2}$. Thus P(n) holds for every n.

- ii. **Exercise:** Prove that $1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$.
- iii. **Exercise:** Prove that for any positive integer $n, 1+3+\ldots+(n-1)=n^2$.

Corollary of weak form of mathematical induction: Let P(n) be a statement on positive integer n such that for some fixed positive integer n_0

- 1: $P(n_0)$ is true,
- 2: for all $k \ge n_0$, P(k+1) is true whenever one assume that P(k) is true.

Then P(n) is true for all positive integer $n \geq n_0$.

- (b) Strong Form of the Principle of Mathematical Induction: Let P(n) be a statement on positive integer n such that
 - 1: P(1) is true,
 - 2: P(k+1) is true whenever one assumes that P(m) is true, for all $m, 1 \le m \le k$.

Then P(n) is true for all positive integer n.

Corollary of strong form of mathematical induction: Let P(n) be a statement on positive integer n such that for some fixed positive integer n_0 ,

- 1: $P(n_0)$ is true,
- 2: P(k+1) is true whenever one assume that P(m) is true, for all $m, n_0 \leq m \leq k$.

Then P(n) is true for all positive integer $n \geq n_0$.