
Lecture 8: Proof techniques

Mathematical system: A system consists of Axioms, Definitions, and Terms is called a
Mathematical system. We prove or disprove any statement within a mathematical system. Let
us define some terms which are related to a mathematical system directly or indirectly.

1. Definition: A precise description or meaning of a mathematical term.

2. Theorem: A proposition that has been proved to be true. A theorem is of two kinds:
Lemma and Corollary.

3. Lemma: A theorem that is usually not too interesting in its own right but is useful in
proving another theorem.

4. Corollary: A theorem that follows immediately from another theorem.

5. Conjecture: A statement that is suspected to be true but yet to prove.

Example: The 4-color conjecture, the 3x+1 conjecture, Goldbach’s conjecture, Hadwiger
conjecture, the abc conjecture, etc.

6. Axiom: A statement that is assumed to be true without proof.

Example: 2+2=4.

7. Paradox: A statement that can be shown, using a given set of axioms and definitions,
to be both true and false at the same time.

Example: Nobody goes to Murphy’s Bar anymore as it’s too crowded.

1 Methods of Proof:

By a proof, of a proposition p ⇒ q, we mean an argument that establishes the truth value of
the proposition. Since the argument can be given in different forms and hence we can have
different proof techniques.

1. Direct Method: Using p is true and with the help of other axioms, definitions and
previously derived theorems, we here show that q is true.

(a) Example: If m is odd and n is even integer, then show that m+ n is odd integer.

Proof: We use the definitions of even and odd integer.

m is odd if there is an integer k1 such that m = 2k1+1 and n is even integer if there
is an integer k2 such that n = 2k2.

Then m+n = 2k1+1+2k2 = 2(k1+ k2)+ 1 = 2k+1, where k = k1+ k2. So, m+n

is odd.
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2. Proof by Contradiction In this technique, we assume that q is false, that is, ¬q is true.
Note that ¬(p → q) ≡ (p∧¬q), that is to say, p → q is true if and only if (p∧¬q) is false.
In other words, p ∧ ¬q is a contradiction.

(a) Example: For any integer x if x2 is even, then x is even.

Proof: Suppose x is not even and x2 is even. So x = 2k1 +1 and x2 = 2k2 for some
integers k1, k2. Then we have (2k1 + 1)2 = 2k2. This implies 4(k2

1 + k1) + 1 = 2k2.
But 4(k2

1 + k1) + 1 is odd and 2k2 is even, so these cannot be equal. Thus we have a
contradiction.

(b) Example: Prove that
√
2 is irrational.

Proof: Suppose
√
2 is rational. Then we can write p

q
=

√
2, where (p, q) = 1.

Then squaring both sides, we get p2 = 2q2. This implies p is even, that is, p = 2k

for some integer k. But then q2 = 2k2, that is, q is even. This gives a contradiction
that (p, q) = 1.

(c) Example: Prove that primes are infinite.

Proof: Suppose there are only k primes p1, p2, . . . , pk. Now consider n = p1p2 . . . pk+

1. Since n is not a prime so there is some prime pi such that pi divides n. Also pi
divides p1p2 . . . pk. This implies pi divides n−p1p2 . . . pk = 1. This is a contradiction
as the smallest prime is 2.

(d) Example: Prove that there are no integers x and y such that x2 = 4y + 2.

Proof: Suppose there are integers x and y such that x2 = 4y + 2 = 2(2y + 1). So
x2 is even and therefore x is even. Let x = 2k for some integer k. Then substituting
this, we get 2k2 = 2y + 1. But 2k2 is even while 2y + 1 is odd, so these cannot be
equal. Thus we have a contradiction.

3. Proof by Contrapositive: Note that p ⇒ q ≡ ¬(p ∧ ¬q) ≡ ¬(¬q ∧ p) ≡ ¬((¬q) ∧
¬(¬p)) ≡ (¬q ⇒ ¬p).

Thus p ⇒ q is logically equivalent to ¬q ⇒ ¬p. In other words, saying that if p is true
then q is true is equivalent to if q is false then p is false.

(a) Example: For any integer x if x2 is even, then x is even.

Proof: Suppose x is not even. So x = 2k1 + 1 for some integer k1. Then we have
x2 = (2k1 + 1)2 = 4(k2

1 + k1) + 1. This shows that x2 is not even.

(b) Example: Let a and b be integers. If a + b is even, then a and b are either both
odd or both even.

Proof: Suppose that a and b are not both odd and both even. So one of a and b

is odd and other is even. Without loss of generality, assume that a is even and b is
odd. So a = 2k and b = 2l+ 1 for some integers k, l. Therefore a+ b = 2(k + l) + 1.
So a+ b is odd.
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4. Proof by Cases: If p ⇒ q and p is partitioned into cases r, s, that is, p ≡ r ∨ s. Then
from the below truth table, we see that p ⇒ q ≡ (r ∨ s) ⇒ q ≡ (r ⇒ q) ∧ (s ⇒ q).

r s q r ∨ s (r ∨ s) ⇒ q r ⇒ q s ⇒ q (r ⇒ q) ∧ (s ⇒ q)

T T T T T T T T
T T F T F F F F
T F T F T T T T
T F F T F F T F
F T T T T T T T
F T F T F T F F
F F T F T T T T
F F F F T T T T

So if p as a proposition involves “or”, it is sufficient to consider each of the possibilities
for p separately.

(a) Example: Prove that there is no possible integer n such that n2 + n3 = 100.

Proof (Method 1): If n2 + n3 = 100 then we have

n2 ≤ 100 and n3 ≤ 100. This implies n ≤ 10 and n ≤ 4. So we have to check for the
cases n = 1, 2, 3, 4. This gives the following cases:

For n = 1, n2 + n3 = 1 + 1 = 2 ̸= 100,

For n = 2, n2 + n3 = 4 + 8 = 12 ̸= 100,

For n = 3, n2 + n3 = 9 + 27 = 36 ̸= 100,

For n = 4, n2 + n3 = 16 + 64 = 80 ̸= 100.

Proof (Method 2): n2 + n3 = 100 is equivalent to n2(1 + n) = 100. This is an
expression of factors of 100 into two numbers n2 and 1 + n.

Note that possible divisors of 100 are : 2,4,5,10,25,50 and out of then for the possi-
bility of n2 = 4 and n2 = 25.

Thus for n2 = 4, n = 2 and (1 + n) = 3, then we get n2.(1 + n) = 4.3 = 12 ̸= 100,

Similarly, for n2 = 25, n = 5 and (1+n) = 6, then we get n2.(1+n) = 25.6 = 150 ̸=
100.

(b) Example Prove that if n is an integer, then n2 ≥ n.

Proof: Proof is divided into three cases: (i) if n = 0 (ii) n ≥ 1 is positive, (iii)
n ≤ −1 is negative.

Case 1: If n = 0, then 02 ≥ 0 holds.

Case 2: If n ≥ 1, then multiplying both sides by n, we get n2 ≥ n.

Case 3: if n ≤ −1, then since n2 ≥ 0, we get n2 ≥ n.

(c) Example Use a proof by cases to show that |xy| = |x||y|, where x and y are real
numbers.
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Proof: The proof is divided into four cases:

Case 1: When x, y ≥ 0, the result holds.

Case 2: When x ≥ 0 and y < 0, then xy ≤ 0. So, |xy| = −xy = x(−y) = |x||y|.

Case 3: When y ≥ 0 and x < 0, then as in Case 2.

Case 4: When x < 0 and y < 0, then xy > 0. So, |xy| = xy = |x||y|.

5. Proof by Counterexample: Suppose we have problem: Prove or disprove A ⇒ B.
Thus if the proposition A ⇒ B is not true then to show that ¬(A ⇒ B) is true for some
instances.

If the problem is of the form ∀x, A(x) ⇒ B(x), then its negation is ∃x (¬B(x) ∧ A(x)).

Thus to prove the original statement is not true, we have to find an x such that (¬B(x)∧
A(x)) is true.

(a) Example: Prove or disprove: for all positive integetr n, n2 − n+ 41 is prime.

Solution: Let us disprove by counterexample. If the statement is not true then we
have to find a positive integer n such that n2 − n+ 41 is not a prime.

Let n = 41. Then n2 − n+ 41 is equal to 1681, which is not a prime.

(b) Example: Prove or disprove: for all positive inetegrs n, 2n + 1 is a prime.

Solution: For n = 1, 2n + 1 = 3, which is prime.

For n = 2, 2n + 1 = 5, which is prime.

For n = 3, 2n + 1 = 9, which is not a prime.

6. Existence Proofs: An existence proof is a proof of a statement of the form ∃xP (x).
Such proofs are generally fall into one of the following two types:

(a) Constructive Proof: Establish P (x0) for some x0 in the domain of P .

i. Example: Prove that If f(x) = x3 + x − 5, then there exists a positive real
number x0 such that f

′
(x0) = 7.

Proof: Find f
′
(x) = 7, this gives x0 =

√
2.

(b) Nonconstructive Proof: Assume no x0 exists that makes P (x0) true and derive
a contradiction. In other words, use a proof by contradiction.

i. Example: Pigeonhole Principle: If n+1 pigeons are distributed into n holes,
then some hole must contain at least 2 of the pigeons.

Proof: Assume n + 1 pigeons are distributed into n boxes. Suppose the boxes
are labeled B1, B2, . . . , Bn, and assume that no box contains more than 1 object.
Let ki denote the number of objects placed in Bi. Then ki ≤ 1 for i = 1, . . . , n,
and so k1 + k2 + . . . + kn ≤ 1 + 1 + . . . + 1 ≤ n. But this contradicts the fact
that k1 + k2 + . . .+ kn = n+ 1, the total number of objects we started with.
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7. Proof by Induction: There are two form of mathematical induction. One is weak form
and another is strong form. We discuss them separately.

(a) Weak Form of Mathematical Induction: Let P (n) be a statement on positive
integer n such that

1: P (1) is true,

2: for all k ≥ 1, P (k + 1) is true whenever one assumes that P (k) is true.

Then P (n) is true for all positive integer n.

i. Example: Prove that 1 + 2 + . . .+ n = n(n+1)
2

.

Proof: Let P (n) = 1 + 2 + . . .+ n. Then P (n) holds for n = 1.

Suppose P (n) holds for n = k, that is, P (k) = 1+ 2+ . . .+ k = k(k+1)
2

. Now we
show that P (n) is true for n = k + 1.

P (k + 1) = 1 + 2 + . . .+ k + (k + 1) = k(k+1)
2

+ (k + 1) = (k+1)(k+2)
2

. Thus P (n)

holds for every n.

ii. Exercise: Prove that 12 + 22 + . . .+ n2 = n(n+1)(2n+1)
6

.

iii. Exercise: Prove that for any positive integer n, 1 + 3 + . . .+ (n− 1) = n2.

Corollary of weak form of mathematical induction: Let P (n) be a statement
on positive integer n such that for some fixed positive integer n0

1: P (n0) is true,

2: for all k ≥ n0, P (k + 1) is true whenever one assume that P (k) is true.

Then P (n) is true for all positive integer n ≥ n0.

(b) Strong Form of the Principle of Mathematical Induction: Let P (n) be a
statement on positive integer n such that

1: P (1) is true,

2: P (k + 1) is true whenever one assumes that P (m) is true, for all m, 1 ≤ m ≤ k.

Then P (n) is true for all positive integer n.

Corollary of strong form of mathematical induction: Let P (n) be a statement
on positive integer n such that for some fixed positive integer n0,

1: P (n0) is true,

2: P (k + 1) is true whenever one assume that P (m) is true, for all m, n0 ≤ m ≤ k.

Then P (n) is true for all positive integer n ≥ n0.
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